

KO N R A D M A R S Z AŁE K | S E N I O R Q U A L I T Y E N G I N E E R

How to keep customers happy about your
web application performance?

TECH 2

IMAGINE THIS IS YOUR APP DEVELOPMENT CYCLE

AGENDA - PRESENT FEW GOOD PRACTICES

Good practice 1

Good practice 2

Good practice 3

Good practice 4

AGENDA - CROSS-FUNCTIONAL COMMUNICATION

Good practice 1

Good practice 2

Good practice 3

Good practice 4

SUPPORT

Support engineer
Product owner

QA

Listen to your customer support

SUPPORT

Support engineer
Product owner

QA

Listen to your customer support

Direct customer feedback is valuable

Prioritise it in your backlog

Good relations with support and
customers allow to reproduce problems
quicker

Slow/fast
What does it mean?

Metrics
One understands when they

know how to measure

Understanding performance

0 4.3 seconds

USER JOURNEY TIME

UX QA

Too much data presented?

Confusing UI?

What content should be shown first?

What can be loaded asynchronously?

Can we do paging here?

… and more user interaction analysis…

A bit like user-based usability testing…

0 1.9 seconds

0 4.3 seconds

Seems
obvious

when done

Easy to omit
such a winUX QA

Users perception is ultimate metric

SPEAKING OF USER JOURNEY
CAN WE GET DATA ABOUT
THEM?

*(WITHOUT SITTING TOGETHER)

REAL USER MONITORING + APPLICATION PERFORMANCE MANAGEMENT

Site reliability engineer
/ Observability team /

/ Tech lead /
DevOps

QA

Find and fix performance issues
before your customers notice

Tools

RUM + APM

SLA
Expected level of service

Data
Records user interaction with

website or client and more…

New Relic - general performance

New Relic - compare week-to-week

New Relic - errors (like http 50X)

New Relic - JS errors

New Relic - drill down

RUM + APM

Testing on production
Reactive not proactive.
Doesn’t prevent part of

customers to see
performance issues. Finds
them late in dev process.

Data-overload
Better pick few key actions to

monitor.
Rely on custom metrics.

Lack of load control
Low probability of finding

regression < ~10%

leads to…

Use on staging, pre-prod,
blue-green deployment,

dogfooding

REGRESSION TEST SUITE

Dev QA

Establish regression test suite

Product
 owner

Regression test suite

Repeatable
Predictable. Robust. Execute
3 times on the same commit

Maintainable
Record and playback is evil

….
and so on…

Acted upon
Commitment to fix issues

found

are results the same?Cover only key actions
that you know you will care about

Cover
Backend and

Frontend
Backend Frontend Network

0

4.3 seconds

(a.k.a. server-
side)

(a.k.a. client-
side)

DRILL DOWN (SIMPLIFIED)

Backend Frontend Network

0 4.3 seconds

Depends on user load Most of performance tooling
is about that

i.e.:REST/GraphQL API

DRILL DOWN (SIMPLIFIED)

Backend Frontend Network

0 4.3 seconds

Runs on client
workstation Can be heavy nowadays

Doesn't depend on users load as much

SOLUTION

Our app

SOLUTIONS ON MARKET

flood.io loadninja.com

and more…

JIRA REGRESSION TEST

CL ASSIC PERFORMANCE TOOLS

CHROME DEVELOPER TOOLS

CHROME LIGHTHOUSE PERFORMANCE REPORT

CODE PROFILER

REGRESSION TEST SUITE

Dev QA

Include
performance
testing in daily
development

Record and payback is OK

DEVELOPMENT VS REGRESSION SUITE

Pick tool to specific code
change. Compare before and
after your changes

Keep or throw away

Is recoding still valid?

Broad scope
(backend+frontend)

Long living
Super robust

Thank you!
KO N R A D M A R S Z AŁE K

Listen to your customer support

Users perception is ultimate metric

Find and fix performance issues
before your customers notice

Establish regression test suite

Include performance testing in daily
development

